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The quadratic effect of random gravity waves in the vicinity of a reflecting boundary 
is studied. It is shown that in a stochastic wave environment, surface wave effects 
proportional to the square of the wave amplitude depend upon the third-order free- 
surface perturbation. Expressions are derived for the quadratic frequency spectrum 
of the hydrodynamic pressure in the fluid domain in unidirectional and standing 
waves reflected off a vertical wall. Computations of the spectrum reveal the 
importance of the effect contributed by the third-order solution, which is found to be 
at  least of comparable magnitude to the corresponding effect obtained from the 
solution of the second-order problem. 

1. Introduction 
Nonlinear surface wave effects play an important role in the hydrodynamic 

analysis of vessels designed to operate in severe wave environments. They are for 
example known to excite low-frequency large-amplitude oscillations of compliant 
floating structures and are responsible for high-frequency loads experienced by 
offshore platforms. Numerous research efforts have therefore been devoted to the 
theoretical treatment of the nonlinear wavebody problem. In three dimensions, the 
majority of these studies are based on perturbation theory and have considered the 
solution of second-order interactions of surface waves with floating bodies. Early 
studies are reviewed by Ogilvie (1983) and more recent work by Faltinsen (1990). 

This article studies the quadratic effects induced by random surface waves upon 
floating bodies, where ‘ quadratic ’ denotes all effects proportional to the square of the 
wave amplitude. They will be shown to be distinct from the ‘second-order’ effects 
considered in most studies to date. It is shown that the consistent account of all 
quadratic effects in a stochastic wave environment requires the solution of both the 
second-order and third-order wavebody problems. 

In the absence of floating bodies, Tick (1959) derived and evaluated the second- 
order correction to the spectrum of unidirectional random waves. Tick did not 
account for third-order perturbations, although they contribute terms proportional 
to the square of the wave amplitude. Such effects were studied by Phillips (1960) in 
connection with the resonant interaction of surface wave components, while their 
relevance in the evaluation of the quadratic spectrum was pointed out by 
Hasselmann (1962) and Kinsman (1965). General expressions for the statistical 
distributions of surface-wave nonlinearities approximated by perturbation series of 
arbitrary order, were derived by Longuet-Higgins (1963). 

The contribution of third-order perturbations to quadratic surface wave effects 
may be illustrated by studying an experimental record of the hydrodynamic pressure 
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p(t) in the fluid domain, measured in a deterministic and in a stochastic wave field. The 
former may for example be generated by the monochromatic or bichromatic 
oscillation of a wavemaker, and p(t) will typically be a periodic signal consisting of 
the primary and higher harmonics. The prediction of p(t) by perturbation theory is 
obtained by the superposition of the linear solution pl(t), second-order solution p2(t) 
and if necessary the third-order solution p3(t). Each will contribute an effect of O(An) 
respectively, where A is the wave amplitude and n the order of the perturbation. If 
effects of order up to  A 2  are desired, it will be sufficient to consider the linear and 
second-order solutions. 

I n  a stochastic wave environment, p(t) as well as pi ( t )  will be random signals. Here 
the proper question to ask is, how many perturbation solutionspi (t) are necessary in 
order to approximate p(t) to O(A2)?  An appropriate ‘measure’ of p(t) of evident 
importance in practice, is its energy spectrum @ ( w )  which may be readily measured 
from the record of p(t). The ‘linear’ spectrum is of O(A2) and depends 
quadratically upon the linear solution pl(t). The ‘quadratic’ spectrum G2(w) is of 
O(A4), and will consist of two components. The first depends on quadratic products 
of p2(t) while the second involves cross-products of pl(t) with p3(t). Therefore, the 
third-order solution will contribute to the quadratic spectrum an effect of the same 
order of magnitude as the second-order solution. This is the focal point of the present 
article which derives the complete form of the quadratic pressure spectrum in 
unidirectional and standing Gaussian waves, and presents computations which 
confirm the importance of the third-order solution. 

In  $2, the Pierson-Neumann theory for the description of a sea state is used for the 
spatial and temporal approximation of unidirectional and standing nonlinear 
random surface waves up to third order in the wave amplitude. Expressions are 
derived for the linear (pl(t)), second-order (p2(t)) and third-order (p2 ( t ) )  perturbations 
of the hydrodynamic pressure in the fluid domain defined as stochastic processes and 
driven by an input stationary Gaussian sea state. Phillips (1960) has determined that 
resonant wave triads will arise in the third-order solution, shown to be responsible 
for the energy interchange between wave components in a sea state by Hasselmann 
(1962). 

In  $3  the complete form of the quadratic spectrum is derived, employing the 
expressions for pi (t) ,  i = 1 , 2 , 3  obtained in $2. This analysis extends the derivation 
of Tick (1959) to third order, for primary wave components which propagate in the 
same or opposite directions. The resonance in the third-order solution gives rise to a 
Cauchy-type singularity in the definition of the quadratic spectrum, which must be 
interpreted in the principal value sense. 

In $4, computations are presented of the quadratic spectrum in unidirectional and 
standing random waves for an input Pierson-Moskowitz spectrum for the free- 
surface elevation. I n  particular, the reflection of an input random wave disturbance 
off a vertical wall of infinite draught is considered in order to study the standing wave 
disturbance arising from the interaction of ambient waves with the body radiation 
and diffraction disturbances. Standing waves are known to give rise to a second-order 
pressure component which does not decay with depth and is considered responsible 
for high-frequency loads experienced by tension-leg platforms. A similar effect is 
present in the third-order solution, contributing a quadratic load in random waves 
as the second-order effect. 

In  unidirectional waves, the two components of the quadratic spectrum arising 
from the second- and third-order solutions are of comparable magnitude and 
contribute small corrections to  the input linear spectrum of the pressure. At low 
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frequencies, the former is dominant, while near the peak of the linear spectrum the 
latter is more significant. At  high frequencies both decay rapidly to zero. 

In standing waves, the magnitude of each component of the quadratic spectrum 
increases significantly, while two distinct features emerge. The component which 
depends on the second-order solution displays a distinct second peak at about twice 
the modal frequency of the input spectrum, and at  high frequencies both components 
of the quadratic spectrum decay substantially more slowly than the linear spectrum. 
It may therefore be concluded that in the presence of a reflecting vertical boundary, 
or more generally a floating body, quadratic wave effects will contain a significant 
amount of energy a t  high frequencies contributed in comparable amounts by the 
second-order and third-order solutions of the wave-body interaction problem. 

2. The perturbation expansion of random gravity waves 
2.1. The nonlinear problem 

Consider a nonlinear random gravity wave disturbance consisting of wave 
components propagating in the positive or negative x-directions, with the x-axis on 
the calm water surface. The free-surface elevation [ ( s , t )  is assumed to be a 
homogeneous and stationary stochastic process, accepting the pair of FourierStieljes 
representations 

(2.1) [(x, t )  = JJgA(k, a)ei(kz-ut)dkda, 

Both are generalized Fourier integrals with the respective integrations extending to 
infinity (Lighthill 1959). Given a deep-water wave record [(x, t ) ,  the generalized 
Fourier transform A(k,  a) is a random variable with zero mean, obeying the relation 

A*(k, a) A(  k- k’, a- d) = @(k, a) S(k’) &(a’). (2.3) 
The real function @(k, a) is the frequency-wavenumber spectrum of this homo- 
geneous and stationary wave field. Its properties and a more detailed discussion of 
relations (2.1)-(2.3) are given in Kinsman (1965). 

The definition of the spectrum does not entail any knowledge of the underlying 
potential flow. The physics of this wave flow will lead to a relationship between k and 
r and will allow representations analogous to (2.1) and (2.2) in the fluid domain. 

Consider the potential #(x, z, t )  satisfying the two-dimensional Laplace equation in 
deep water and accepting the Fourier-Stieljes representation 

#(x, z, t )  = JJgB(k, a) elklrei(kz-ut) dk da. (2.4) 

A relation between B(k,a)  and A ( k , a )  is obtained by enforcing the free-surface 
condition. The exact problem will not be pursued here. Instead the convergence of 
perturbation series expansion for the velocity potential and the wave elevation will 
be assumed, 

# = # 1 + # 2 + # 3 . . * 3  (2.5) 

[ = g, + c z  +Q + . a .  . (2.6) 

The boundary-value problems governing #i will be derived next and the 
Fourier-Stieljes representation of the wave field up to third order will be obtained. 
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2.2. The linear problem 
The linear free-surface condition and wave elevation take the form 

Introducing a representation analogous to (2.4) for the linear potential 
enforcing the linear free-surface condition (2.7), we obtain 

and 

B, ( k ,  a) (a2-gIkl) = 0.  (2.9) 

Solutions to (2.9) are of the form 

B,(k, a) = B ( Y ,  a) &( k - y , .) +B( - y , .) .( k+y, .), (2.10) 

where S(s) is the Dirac delta function. The linear potential and corresponding wave 
elevation follow in the form 

4: (2, z, t )  = (a) el'l'exp [ia(slal/gs-t)] da,  (2.11) 

where s = f 1 for right- and left-going waves respectively, and& = B, (salal/g). For 
a unidirectional wave field, s = + 1 and i t  follows from (2.3) that 

A:* (a)A: (a-v') = S,(a) &(a'), (2.13) 

where S,(a) is the two-sided frequency spectrum of the stationary and homogeneous 
linear wave field defined by (2.12). 

2.3. The second-order problem 
The ensuing derivation generalizes the analysis of Tick (1959) to second-order 
interactions between wavetrains propagating in the same or opposite directions. 

For a linear wave field varying exponentially in the z-direction the second-order 
free-surface condition takes the form 

(2.14) 

enforced on the z = 0 plane. The linear velocity potential here consists of wave 
components 4: propagating in the positive or negative directions for s = f 1, 
therefore the second-order potential will accept the representation 

$2 = c 4 " z ' 2 ,  

8182 

where sl, s2 = & 1 and 

(2.15) 

(2.16) 
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Substituting (2.11) and (2.16) in the free-surface condition (2.14) and invoking the 
coordinate transformation 

(2.17) k = (81 flllflll + 8 2  ~ , l 4 ) / 9 ,  
the second-order potential may be shown to accept the representation 

= g1+ flz 

$1181 (z, 2, t )  = [ [ Bil(al)Bp (a,) eIkl+ka~z+it(kl+k,)z-(o,+o,)tl 

J ulJ ua 

where V18P (Cl,fl,) = i(a1 +a,) (Ik,k,l - klk,), (2.19) 

with k, = st a,la,l/g. The double Fourier-Stieljes integral (2.18) is free of singularities. 
It follows from (2.19) that Q818a = 0 when k, k, > 0. When k, k, < 0, we may assume 
without loss of generality that lall > 1 ~ ~ 1 .  It follows that 

= -i- 4 a2 (2.20) W8n ( a 1 9  a,) 
g Ik, + k2I- (a1 + an)2 g 

The regularity of the ratio (2.20) suggests thet the second-order free-surface 
condition (2.14) accepts no resonant solutions and leads to a second-order potential 
which is bounded in time. 

2.4. The third-order problem 
Carrying out the perturbation expansion of the nonlinear free-surface condition to 
third order, we obtain on the z = 0 plane 

a -+g-= w 3  -2,(v$,.v$,)-~v$,.v(v$,.v$,) 
atz az 

where 5, is given by (2.8). Solutions to (2.21) satisfying the Laplace equation in the 
fluid are obtained as in the second-order problem. Introducing the representations 
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Solutions to  the Laplace equation subject to the linear free-surface condition and 
forced by the function (2.23), take the form 

+ p 8 3  (x, 2, t )  = I, I, B;I (a , )~? (a, )~? (a,) eikz-lklz $(k, a; t )  

x CSlSzS3 (al, a,, a,) da, da, da,, (2.25) 

where k = E l  + E ,  + E , ,  a = a1 + u2 + u3 and the function $(k, a; t )  obeys the 
differential equation 

-+a;$ d V  = e-i"t, (2.26) 
dt2 

with a: = glkl. The particular solution of (2.26) is 

az * a:, 
a2 = a;. 

(2.27) 

It follows that when a; = uz, or 

gIk1 + k, + k3l = (a1 + -k a,)', (2.28) 

the third-order velocity potential will grow in time owing to the resonant excitation 
of solutions to the homogeneous free-surface condition (2.30). Phillips (1960) has 
shown that this resonance is possible for appropriate combinations of the 
wavenumbers and frequencies of the primary wave components. Hasselmann (1962) 
carried out the perturbation expansion to  fifth order and determined the resulting 
energy interchange among wave components in a random wave environment. 

The perturbation series expansion of the hydrodynamic pressure p ( x ,  z ,  t )  in the 
fluid domain follows from Bernoulli's equation and the perturbation potentials 
derived above. At (x = 0, z = - d )  the three leading terms of the pressure take the 
form : 

linear pressure 

p ,  (0, -d ,  t )  = C A;] (al) Pl (a1) e+It dal, (2.29) 

(2.30) 
81 I, 
Pl (a,) = pg e+Jd ; 

second-order pressure 

Ail (al)A;l (az)Pz (al, a,) e-f(al+uz)t dalda, ,  (2.31) 1,1, P, (0, -4 t)  = c 
8182 

(2.32) 

(2.33) 
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(2.34) 

In the next section these expansions will be used to derive the quadratic component 
of the pressure spectrum. 

3. The quadratic spectrum of the hydrodynamic pressure 
In $2 the three leading terms in the perturbation series approximation of the 

hydrodynamic pressure at x = 0 ,  z = - d  were derived. Each is a stochastic process, 
function of time with distinct statistical properties. We may therefore write 

P( t )  = PI ( t )  +P2 ( t )  +P3 ( t )  + * * a .  (3.1) 

First, the autocorrelation function of p( t )  is defined as the following ensemble average 
at some fixed time t :  

where Re stands for the real part and * denotes the complex conjugate of the 
quantities involved. For stationary processes, the autocorrelation function is 
independent of t ,  yet here it is so far unknown if p ( t )  is stationary owing to the form 
of the function @ ( t )  in the definition of the third-order perturbation p ,  ( t ) .  
The two-sided energy spectrum @ ( w )  follows from the familiar relationship 

~ ( 7 ;  t )  = ~e {EW) p * ~ +  7111, (3.2) 

(3.3) 

The substitution of (3.1) into (3.2) leads to a series expansion for the autocorrelation 
function and the spectrum of the form 

R(7; t )  = R, ( 7 ;  t )+R,  ( 7 ; t )  + ..., 
@(w ; t )  = G1 (w ; t )  + @, (0 ;  t )  + ... , 
R, (7 ; t )  = Re {Ebdt) P: ( t  + 711) 

R2 (7 ; t )  = Re mP: ( t )  P2 (t + 7 )  +P: ( t )  P3 (t + 7 )  + P: (t + 712% (t)l)* 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

where 

Our objective is the determination of the quadratic spectrum G2(w) which may be 
seen from (3.7) to depend on all three leading-order perturbations of the 
hydrodynamic pressure. 

For the evaluation of the ensemble averages indicated above, use will be made of 
(2.13), expressed in the more general form 

E[A? (a1)A?* (a,)] = S~~~z(a1)8(a1-a2). 

Also, since the linear wave elevation defined by (2.12) is real, the following relation 
holds : 

Ail (a) = A?* (-a). (3.9) 

Equation (3.8) states that the generalized Fourier transforms of the linearized wave 
elevation defined by (2.12) are uncorrelated complex random variables a t  two 
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unequal frequencies a19 ,, When the associated wave fields are unidirectional, or 
s1 s, = 1, the spectrum S 8 1 8 2  (a) denotes the energy density of the linearized free-surface 
elevation a t  the frequency a. When the input linear wave fields propagate in opposite 
directions, or s, s2 = - 1, the value of S s l s 2  (a) depends on their origin. If they arise 
from two independent storms, A: (s) is independent of A; (a) and S+- = 0. If on the 
other hand one wave field is the reflection of the other off a vertical wall, then their 
complex amplitudes of the same frequency are correlated and S+- will be finite. These 
cases will be considered in more detail in $4  where unidirectional and standing wave 
fields are studied. 

The validity of (3.8) does not entail that the linear free surface is Gaussian. The 
need for this assumption will become evident later in this section when the quadratic 
spectrum is derived. 

In the linear problem, the substitution of the linear pressure defined by (2.29) in 
(3.6) leads to 

s1s2 J u1 J u2 

(3.10) 
and by virtue of (3.8), we obtain the linear autocorrelation function 

(3.11) 

which may be verified to be independent of t because the linear pressure p l ( t )  is 
stationary. The linear spectrum follows from (3.3), in the form 

(3.12) 

which is the familiar Wiener-Khintchine relation for linear systems. 

the corresponding autocorrelation function as follows : 
The derivation of the quadratic spectrum follows similar steps. First decompose 

(3.13) 

(3.14) 

& ( 7 ; t )  = 4 2  (7; t)+R13 (7; t ) ,  

R,, (7 ; t )  = Re {Eb, ( t )  Pz* ( t  + 7111, where 

(3.15) 

For the first component, it follows upon substitution of (2.31) in (3.14) that 

R,, (7 ; t )  = Re Iul Iwz[u8[u4E[A? ( ~ I ) A ?  (az)A:8* (a3)A?* (a411 

81828184 

x P$82 (al, a2)PY4 (a3, a4) e ~ i ~ u ~ + u ~ ~ u ~ ~ u ~ ~ ~ + i ~ u ~ + u ~ ~ r d a l  da, da3 da,. (3.16) 

Progress towards the further reduction of the fourfold integral (3.16) requires 
knowledge of the ensemble average of the product of four random variables. The 
property (3.8) is here of no direct use, unless further information on the statistical 
properties of the complex wave amplitudes A8,(ai) is available. If the linear free- 
surface elevation defined by (2.12) is Gaussian, the uncorrelated random variables 
xi = A8, (al) are jointly normally distributed and independent. In this case the 
following relation holds : 
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For the random variables A? (ai), (3.17) and (3.8), (3.9) lead to the result 

E[A;I (a,)AP (Cr,)AP* (a,)A:l* (a4)] = S " S 2  ( a 1 ) S 8 3 8 4  (a3)6(a1+a2)S(a3+(T4) 
+ S 5 1 8 8  (a1) s s 2 5 4  (az) S(al - a3) 6(a, - a4) 

+ S 8 1 8 4 ( ~ 1 ) S 8 2 s a ( a , )  S ( a , - a , ) S ( ~ , - ~ , ) .  (3.18) 

The substitution of (3.18) in (3.16), reduces the autocorrelation function to the form 

R,, (7)  = Re z d a d d  [K2s48384 (a, a') +K81828384 (a, a') e'("+"')']. (3.19) 

(3.20) 

+S81s4(a)P~(a,a')S8283(a')P8,,Bs(a', a). (3.21) 

81828384 

where K>828384 ( 3  a') = ,98182 (a)  P:,", (a ,  - a') S % 8 4  (a') P821111( (a, - a'), 
KS88.9 1 2 3 4 ( (T, a') = 5 5 1 8 3  (a)  P p  (a, a') S S P 8 4  (cr') P",,", (a,  a') 

The corresponding two-sided spectrum becomes 
m 

@,,(w) = [s(u)JJrm dc~da 'K3~@~~4(a ,  a') + daK8184s384 (a,  u-a)]. (3.22) 
81828384 

The leading term in (3.22) arises from the non-zero mean value of the second-order 
pressure and will hereafter be omitted. The remaining term generalizes the 
corresponding expression derived by Tick (1959) for the wave elevation for wave 
components which may propagate in the same or opposite directions. 

An equally important contribution to the quadratic spectrum arises from the 
autocorrelation function defined by (3.15). Using the definitions (2.29), (2.30) and 
(2.33), (2.34) of the linear and third-order pressures, we obtain 

R, , (T ;~ )  = Re 11 
/nlJu2Ju3[n4E[A:1* (a,)A? @4)1 81828a84 

x Pil* (al) [P"3ra,s, (az, (T,, up, t +  T )  eiult + P y  (az, aa, a,, t )  ei"l(t+7)] da, da, da, da,. 
(3.23) 

Again, by virtue of (3.17) it follows that 

E[A:1* (a1)A? ((T,)A? (a3)A? (a4)] = S 8 1 8 4  (rT1)SSJ84 (a3)6(a1-a,)S(a3+a4) 

+ s8l8a (aJ S8e84 (a,) S( a1 - a,) 6( a, + a4) + S S 9 4  (a,) S 8 2 8 3  ( az) 6( a1 - a4) a( az + a,), 
(3.24) 

and upon substitution in (3.23) we obtain 

R13(7) = z JJ:?da'P? (a )  [S8154 (a)  Sss84 (a')L8,ss,s, (a, a'; t ,  7 )  

51s28384 

+ ~ S ' 1 ~ 3  ( a ) S 8 p S 4  ( a ' ) L y  (a,  a'; t ,  T )  +S8184 ( a ) S 8 s 8 3  (a')L8,48a8( (a, a'; t ,  T)], (3.25) 
where 

Ll ( a , a ' ; t , ~ )  = Re[P,(a,a', -a';t)eiu(t+7)+P3(a,a', - ( ~ ' ; t + ~ ) e ' ~ ~ ] ,  (3.26) 
L, (a,  a' ; t , T )  = Re [P, ( a' , a , - a' ; t ) eiu(t+7) + P, ( a' , a, - a' ; t + T )  eiUt], ( 3.27) 
L, ( ( ~ , a ' ; t , ~ )  = Re[P,(a', -(~',a;t)e'"(~+')+P,(a', -a ' ; t+~)e '"~] ,  (3.28) 

and the superscripts 5, 5, s4 have been omitted for brevity. The third-order pressure 
transfer function is defined by (2.34). Here we are interested to determine the real 
part of (3.26)-(3.28). It follows from (2.34) that the time dependence of P, is of the 
form 

(3.29) 
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where $ ( t )  is defined by (2.27) and A ,  B are real time-independent functions of the 
frequencies a’, a. 

and upon substitution in (3.26), it follows that 

L , ( a , d ; 7 )  = 2 c 0 s ( a 7 ) ( ~ + B ) .  a; - a’ 

For a2 = a;, the corresponding expressions become 

(3.30) 

(3.31) 

(3.32) 

and L1(a,a’;7) = 2cos(f.r7)B. (3.33) 

It is evident from (3.33) that the linear time growth associated with the third-order 
pressure does not affect the evaluation of the quadratic wave spectrum because the 
corresponding third-order wave component is 90” out of phase relative to the linear 
solution. Thus, (3.26)-(3.28) reduce to 

L, (a, a’; t ,  7) = 2P3 (a, a/, - d) cos (m), (3.34) 
L2(fT,a’;t,7) = 2P3(a’,a, -a ‘ )cos(a7) ,  (3.35) 
L, (r, a’;t,7) = 2P3 (a/, -a‘, a) cos (m), (3.36) 

where the new third-order pressure transfer function P3 is independent of time and 
is defined by 

with ki = si ai Iatl/g. Expression (3.37) is now a real quantity and the singularity a t  
g Ik, + k ,  + k31 = (a, + a2 + a3)2 in the integral (3.25) must be interpreted in the 
Cauchy principal-value sense. 

Upon substitution of (3.34)-(3.36) in (3.25), we obtain the autocorrelation function 

(3.38) d a  da’ cos ( a7) Ls1s283s4 (v, a’), Ira R 1 3 ( 7 )  = c 
818Z83s4 

where 
L S S S S  1 2 3 4 (a, a’) = P;1 (a) [S81S8 ( a ) S 8 3 S 4  (a’) P3 (a, a’, -a‘) 

+S61s3(8)Ssz64(a’)P3 (a’,a, -a’)+SSlS4(a)S~2S3(a’)P3 (d, -a’, a)], (3.39) 

withP, defined by (2.30) and P3 by (3.37). The frequency spectrum follows from (3.3), 

Ol3(w) = C da[Ls1szs3s4 ( w ,  a) + Ls1szs3s4 ( - w ,  a)]. (3.40) 

Equation (3.40) completes the derivation of the component of the quadratic 
spectrum which depends upon the linear and third-order solutions. It is of the same 
order of magnitude as the second-order spectrum (3.22) and represents the principal 
result of this paper. 

a3 

81s28384 5_, 
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In summary, the complete quadratic spectrum of the hydrodynamic pressure 
induced a t  some depth d by an input linear Gaussian random wave field consisting 
of wave components propagating in either direction, is given by 

where the kernels K and L are defined by (3.21) and (3.40), respectively and the 
integral in (3.40) must be interpreted in the principal-value sense a t  the Cauchy-type 
singularity of the kernels L. The summations are over all possible combinations of 
(s1s2sgs4), with st = + 1 .  

The theory derived in this Section is applied in $4 to the evaluation of the pressure 
spectrum due to unidirectional and standing wave fields. 

4. Spectra of unidirectional and standing waves 
Two cases are studied in the present section. First, the quadratic pressure 

spectrum arising from a unidirectional random wave field will be computed, given 
the spectrum of the ambient wave elevation. Next, the spectrum of the 
hydrodynamic pressure on a vertical wall will be evaluated in order to illustrate the 
quadratic effect of random surface waves on floating bodies. In both cases the 
relative importance of the linear spectrum and the two components of the quadratic 
spectrum will be discussed. 

4.1. Unidirectional waves 
The frequency spectrum of the input Gaussian free-surface elevation is assumed to 
be of the form 

where the constants A ,  B depend on the wind speed and fetch of the storm and the 
factor + indicates that (4.1) is to be understood as a two-sided spectrum, an even 
function of w .  Its  one-sided form equals twice (4.1) defined over the positive 
frequency axis. 

For a unidirectional random wave field propagating in the positive x-direction, 
si = 1, i = 1,2 ,3 ,4  in all expressions of 53, and the corresponding sums consist of one 
term. It follows that 

The linear spectrum of the pressure follows from (3.12), 
S'@j ( w )  = S(w) .  (4.2) 

@ ( w )  = IP1(w)12 X(w), (4.3) 
with the linear transfer function PI given by (2.30). The two components of the 
quadratic spectrum follow from (3.22) and (3.40). The former reduces to 

m J- m 
@22 ( w )  = 2 d a S ( ~ ) S ( W - ~ ) P ~  (a, @-a), (4.4) 

with the second-order transfer function P2 given by (2.32) with s1 = s2 = 1.  The 
second component of the quadratic spectrum is obtained from (3.39) and (3.40) in the 
form 

(4.5) 
-CC 
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FIQURE 1. One-sided spectra of the hydrodynamic pressure plpg at a distance d = 1 m beneath the 
z = 0 plane in a unidirectional Gaussian sea state driven by a wind speed of 40 knots ..., linear 
spectrum with peak value at 16.7 m2 s ;  -, quadratic spectrum OZ2; --, quadratic spectrum ala; 
-, total quadratic spectrum. 

I .... ._._.... "... , , 

0 1 .o 
w (rad/s) 

FIQURE 2. Same as figure 1 at water depth d = 5 m. Peak value of linear spectrum 
is at 15.9 m2 8.  

where G ( w , ~ r ) = P , ( w , ~ r , - ~ r ) + P ~ ( ~ r , w ,  - a ) + P 3 ( ~ , - ~ , w )  (4.6) 
and the third-order pressure transfer function P3 defined by (3.37). It follows from 
this definition with si = 1, that the resonance condition (2.37) is satisfied for all 
frequency triads which appear in (4.6), irrespective of the values of a and w. 
Therefore, it follows from (3.32), (3.33) that the first term in (3.37) is to be omitted, 
yielding a regular integrand in (4.5) for a unidirectional wave field. 

Figures 1 and 2 illustrate the linear and quadratic frequency spectra of the 
hydrodynamic pressure at distances d = 1 and 5 m beneath the z = 0 plane. The 
input free-surface elevation is obtained from the Pierson-Moskowitz spectrum, (4. i),  
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at a wind speed of 40 knots. The component Oz2 ( w )  of the quadratic spectrum may 
be seen to be small across the frequency range, but more pronounced at low 
frequencies. 

The component @13 displays a significant peak at  the modal frequency of the linear 
spectrum, which is however small relative to the corresponding linear value. This 
behaviour follows from (4.5), which indicates that aI3 is proportional to the linear 
spectrum #(w) .  A second consequence of this property is that will be zero at low 
frequencies. Therefore, most of the quadratic energy density at  low frequencies is 
contributed by the second-order component @2z. At high frequencies both 
components decay rapidly to zero. 

4.2. Standing waves 

Consider now the case of a random wave field propagating in the positive x-direction 
which encounters a vertical rigid wall of infinite draught located at  x = 0. If the 
right-going linear wave field is defined by (2.11), (2.12) with s = 1, the reflected left- 
going field is given by the same relations with s = - 1, and 

A; (a)  = A :  (v ) .  (4.7) 

It follows from (4.7) that right- and left-going wave components of the same 
frequency are correlated, and by virtue of (2.13) and (3.8) we obtain 

Xf- (a)  = #(u). (4.8) 

Therefore, all spectra in 0 3 of the form Ssisf (a)  are equal to the input spectrum #(a). 
The linear spectrum is obtained from (3.12) where the summation is over all four 
combinations of the index pair slsz. It follows that 

@ ( w )  = 41P1 ( w ) l z # ( w ) .  (4.9) 

The first component of the quadratic spectrum becomes 

@,,(w) = 2 d v # ( a ) S ( a ) S ( w - a ) [ C ~ ~ ( u , w ,  -a) Z P y ( v , w ,  -a)] ,  (4.10) 

where each summation in (4.10) is again over all four combinations of the index pairs 
st s,. It follows from the definition (2.32) that the second-order transfer function 
obeys the symmetry relations P>'e = PsZ,Si which allows the reduction of (4.10) to the 
final form 

m 

s_, '1'8 1 LS, 

(4.11) J m 

@ 2 z ( ~ )  = 8 daS(v)S(o-a) P 2 ( a , ~ - a )  . I, [s-*l 

Similar steps applied to the second component of the spectrum, lead to 

m 

CD13 ( w )  = 2P, ( w )  S(W) duS(u) [G*as3'4 (w,  C )  + GEa'5'4 (-0, a)] ,  (4.12) 
E2SaS4 f-02 

with G8~8s84 defined by (4.6) and (3.37) and the summation is over all eight 
combinations of the triad s2s3sp with st = + 1 .  Here, Cauchy-type singularities will 
arise in (4.12) because the indices st may assume positive and negative values. It 
follows from (2.37) that they will occur for values of a such that 

12aZk 0 2 1  = w2, (4.13) 

or at a = 0, f Iw(. All integrals in this section are evaluated by Romberg's 
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FIGURE 3. One-sided spectra of the hydrodynamic pressure plpg a t  a distance d = 1 m beneath the 
z = 0 plane in a standing Gaussian sea state driven by a wind speed of 40 knots : . . . , linear spectrum 
with peak value at  67.3 m2 s ; ---, quadratic spectrum GZ2 ; quadratic spectrum BI3 ; -, total 
quadratic spectrum. 

quadrature. The integration in the vicinity of the Cauchy-type singularities is carried 
out by removing from the range of integration a segment centred a t  the singularity, 
and ensuring convergence as its length is allowed to approach zero. 

Figures 3 and 4 illustrate the linear and quadratic components of the standing- 
wave pressure spectrum on a rigid wall located at x = 0 at depths d = 1 and 5 m 
respectively. The standing wave field is obtained by the reflection off the wall of an 
input unidirectional sea state propagating in the positive x-direction with energy 
density given by the Pierson-Moskowitz spectrum a t  a wind speed of 40 knots. 
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The magnitude of the quadratic components of the pressure spectrum are now 
significantly larger. In  particular, the spectrum cP22 ( w )  now displays a second peak 
at  a frequency about twice the value of the modal frequency of the linear spectrum. 
It arises from the slow attenuation with depth of the second-order pressure signal in 
standing waves at a frequency equal to the sum of the frequencies of the primary 
wave components. The decay of the spectrum cP13 also appears to be significantly 
slower beyond a certain frequency relative to the case of unidirectional waves. The 
same spectrum also displays a significant peak at  the modal frequency of the linear 
spectrum, suggested by the form of expression (4.12). At low frequencies most of the 
energy density is supplied by cPZ2 while cP13 is essentially zero. At  high frequencies 
both spectra decay to zero at a rate significantly slower than the linear spectrum. 

Comparing figures 3 and 4 a trend is evident. The magnitude of the spectrum djZ2 

appears to be relatively insensitive to the depth d ,  while the magnitude of cPI3 
decreases with depth. Near the free surface, the contribution from cP13 is greater 
except at  low frequencies, while far from it its effect is reduced. At high frequencies 
the total quadratic pressure spectrum contains significantly more energy than would 
be predicted by linear theory. It is therefore concluded that both its components 
must be accounted for in the hydrodynamic analysis of marine structures like 
tension-leg platforms sensitive to high-frequency wave loads. 

This study has been supported by the MIT Sea Grant College Program. 
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